Problems	Prof. Peter Koepke
Series 6	Dr. Philipp Schlicht

Problem 23 (2 points). Prove that card(n) = n for all $n \in \omega$.

Problem 24 (4 points). Prove the following statements.

- (a) Every subset of a finite set is finite.
- (b) If a, b are finite, then $a \cup b$ is finite.
- (c) Is a, b are finite, then $a \times b$ is finite.
- (d) If a is finite, then $\mathcal{P}(a)$ is finite and has size $2^{card(a)}$.

Problem 25 (2 points). Prove in the theory ZF that the well-ordering principle implies the axiom of choice AC.

Problem 26 (4 points). Show that in the theory ZF, the axiom of choice is equivalent to the *Hausdorff Maximality Principle*: for every partial order $(P, \leq) \in V$, there is an inclusion maximal chain X in (P, \leq) . I.e. if $Y \supseteq X$ is a chain in (P, \leq) , the Y = X.

Problem 27 (8 points). We consider the *linear order topology* τ on the class Ord of ordinals. The basic open sets of τ are the intervals

$$(\alpha, \beta) := \{ \gamma \in \text{Ord} \mid \alpha < \gamma < \beta \}$$

for $\alpha < \beta$ in Ord and

$$[0,\alpha) := \{\gamma \mid \gamma < \alpha\}$$

for α in Ord. A set of ordinals is *open* with respect to τ if there is a cardinal μ and a sequence $\langle U_{\alpha} \mid \alpha < \mu \rangle$ of basic open sets with $x = \bigcup_{\alpha < \mu} U_{\alpha}$. Prove the following statements.

- (a) A set x of ordinals is closed with respect to τ if and only if $\sup(y) = \bigcup y \in x$ for all subsets $y \subseteq x$.
- (b) For all $\alpha \in \text{Ord}$, the set α is (covering) compact with respect to τ if and only if $\alpha = 0$ or α is a successor ordinal.

- (c) For any ordinal α , the function f_{α} : Ord \rightarrow Ord, $f_{\alpha}(\beta) = \alpha + \beta$ is continuous with respect to τ .
- (d) The function f^{β} : Ord \rightarrow Ord, $f^{\beta}(\alpha) = \alpha + \beta$ is not continuous with respect to τ for $\beta = 1$ and for $\beta = \omega$.

Due Friday, December 2, before the lecture.

 $\mathbf{2}$